
Using a Public Mutex to Guard a Shared
Resource

Protect a shared data region among tasks in multiple memory spaces. A shared data region should already be created

and tasks sharing the region should have already opened it to gain access. The Wind River® Task Guide, Creating and

Using a Shared Data Object, provides details. The code is taken from the video demonstration, Creating and Using of

VxWorks® Public Objects.

task guide

Action Example

1 Create a project for each participant
sharing the data region and its
associated mutex.

2 For the Writer, the first task to execute,
write code that does the following:

a) Creates the public mutex and cap-
tures its ID
b) Loops, assigning to V1 and V2
(shared variables) the value of the
variable COUNT (using offsets to the
shared data region), then increments
COUNT; note the framing of the critical
region with semTake() and semGive()

The code will look something like this:
int *pSharedData; /* pointer to shared data */
SEM_ID mutexId;
mutexId = semOpen(“/mutexSem”,SEM_TYPE_MUTEX,0,
		 SEM_Q_PRIORITY,OM_CREATE,NULL);

FOREVER{
 semTake(mutexId, WAIT_FOREVER);
 * (pSharedData + V1_OFFSET) =* (pSharedData + 	
		 COUNT_OFFSET);
 * (pSharedData + V2_OFFSET) =* (pSharedData + 	
		 COUNT_OFFSET);
 semGive(mutexId);
 (* (pSharedData + COUNT_OFFSET))++;
}

3 For the Reader, write code that does
the following:

a) Attaches to (gains access to) the
Receiver task and captures the ID
b) Loops, comparing the values of the
shared variables V1 and V2; note the
framing of the shared variables with
semTake() and semGive()
c) Compares the variables, printing an
error message if they are not equal;
remove the framing to examine the
effect

The code will look something like this:
SEM_ID mutexId;
int *pSharedData; /* pointer to shared data */
int v1, v2, same; /* count variables */
mutexId = semOpen(“/mutexSem”, 0, 0, 0, 0);
FOREVER{
 semTake(mutexId, WAIT_FOREVER);
 v1 = * (pSharedData + V1_OFFSET);
 v2 = * (pSharedData + V2_OFFSET);
 semGive(mutexId);
 same=(v1==v2);
 if (!same)
	 printf(“v1 = %u, v2 = %u\n”, v1,v2);
 taskDelay (sysClkRateGet() / 5);
}

Key Points

•	 The semOpen () call is used either to create the public task initially or to gain access to it. The only difference is the

OM_CREATE option.

•	 This facility may easily be extended to incorporate addition tasks that participate in the sharing.

•	 The code is for illustration only; you’ll apply the mutex protection in a similar way in your application.

education.windriver.com – training@windriver.com

Task Guide

©2012 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems,Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev 05/2012

Wind River is a world leader in embedded and mobile software. Wind River has been pioneering computing inside embedded devices since 1981, and its technology is found in more than
1 billion products. Wind River is headquartered in Alameda, California, with offices in more than 20 countries. To learn more, visit Wind River at www.windriver.com.

